Research in MRI-guided breast radiotherapy at UMC Utrecht

Tristan van Heijst

Department of Radiotherapy, UMC Utrecht

ARTI Stereotaxie Symposium, 4 oktober 2014
Overview

• MRI Linac at UMC Utrecht
• Skin dose effects in breast RT in a magnetic field
• MRI of individual LNs for regional RT
• Intra-fraction motion of breast (tumours)
• Conclusions
Why MRI?

MRI: superior soft-tissue contrast, high resolution, geometric accuracy

Lumen

Three rectal wall layers:

- Mucosal layer
- Submucosal Layer
- Muscle layer

Mesorectal fat

Mesorectal fascie

Rectum

T2 weighted imaging

Breast

Courtesy of Martijn Intven
MRI Linac

Elekta accelerator

Philips Achieva 1.5 T MRI
MRI Linac combines 1.5 T MRI scanner with 8 MV photon linear accelerator
MRI-guided radiotherapy at UMC Utrecht

1.5 T MRI scanner with 8 MV photon linear accelerator

- Clinical model of MRI Linac being constructed
- Allows motion tracking, real-time position verification and on-line adaptive (re)planning
- Research line in MR-guided RT at UMC Utrecht
 - *bone metastasis, pancreas, rectum, etc.*
- Towards GTV boosting, stereotaxy
- My PhD: MRI-guided RT of the breast (physics) - MRI Linac
Skin dose effects: treatment planning study

- Electron Return Effect (ERE): Lorentz force acts perpendicularly on moving electrons

Whole-breast irradiation and the ERE

![Diagram showing electron return effect at 0 T and 1.5 T fields.](image-url)
Skin dose effects: treatment planning study

- Electron Return Effect (ERE): Lorentz force acts perpendicularly on moving electrons
- Result: higher skin dose!
- Expected in whole-breast irradiation (WBI)
 - *Large targets, large areas of skin involved*
- Also dependent on inclination of fields with the tissue
Skin dose effects: treatment planning study

- Electron Return Effect (ERE): Lorentz force acts perpendicularly on moving electrons
- Result: higher skin dose!
- Expected in whole-breast irradiation (WBI)
 Large targets, large areas of skin involved
- Also dependent on inclination of fields with the tissue
- What about accelerated partial-breast RT (APBI) with several fields?

Purpose: investigate magnetic-field effects on skin dose

Van Heijst et al. 2013 PMB
Skin dose effects: treatment planning study

Methods and materials

- CT scans from 12 BCT patients in supine RT position
- Three RT techniques

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose Calculation</th>
<th>Equivalent Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBI by 2 fields</td>
<td>$16 \times 2.66 \text{ Gy} = 42.56 \text{ Gy}$</td>
<td></td>
</tr>
<tr>
<td>WBI by 7 fields</td>
<td>$16 \times 2.66 \text{ Gy} = 42.56 \text{ Gy}$</td>
<td></td>
</tr>
<tr>
<td>APBI by 7 fields</td>
<td>$10 \times 3.85 \text{ Gy} = 38.5 \text{ Gy}$</td>
<td></td>
</tr>
</tbody>
</table>

APBI: focus on tumour bed (with margin)

Van Heijst et al. 2013 PMB
Skin dose effects: treatment planning study

Methods and materials

- CT scans from 12 BCT patients in supine RT position
- Three RT techniques
- Specially developed treatment-planning software
- Calculations at 0 T, 0.35 T and 1.5 T
- Delineations by radiation oncologist
- Organs-at-risk, including skin (first 5 mm)

<table>
<thead>
<tr>
<th>Radiation technique</th>
<th>Dose Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBI by 2 fields</td>
<td>16 x 2.66 Gy = 42.56 Gy</td>
</tr>
<tr>
<td>WBI by 7 fields</td>
<td>16 x 2.66 Gy = 42.56 Gy</td>
</tr>
<tr>
<td>APBI by 7 fields</td>
<td>10 x 3.85 Gy = 38.5 Gy</td>
</tr>
</tbody>
</table>

Van Heijst et al. 2013 PMB
Skin dose effects: treatment planning study

Results

• Typical dose volume histograms
• Dose differences at 0.35 T and 1.5 T are evident in WBI

Van Heijst et al. 2013 PMB
Skin dose effects: treatment planning study

Results

• Typical dose volume histograms
• Dose differences at 0.35 T and 1.5 T are evident in WBI
• Clinically significant: 35 Gy and higher
• No significant effects in APBI

Van Heijst et al. 2013 PMB
Skin dose effects: treatment planning study

Conclusion

• Skin dose higher at 1.5 T in WBI, not in APBI
 - Conventional WBI for MRL: potential problem
 - APBI in MRI Linac: no toxicity hazards expected (> 35 Gy)
 - Smaller targets, less superficial: no disadvantages

MRI Linac:

Focus on RT of the tumour (bed) instead of whole breast
MRI of individual LNs for regional RT planning

- Regional RT preferred over axillary LN dissection (ALND) based on AMAROS/Z0011 trials

2010 Leonor Garcia del Valle

MRI of individual LNs for regional RT planning

- Regional RT preferred over axillary LN dissection (ALND) based on AMAROS/Z0011 trials
- ALND associated with high toxicity (up to 60%)

2010 Leonor Garcia del Valle

MRI of individual LNs for regional RT planning

- Standard delineations performed on CT
- Delineation guidelines\(^4\) based on anatomical boundaries
- RT-induced toxicity\(^5,6\) up to 14%

MRI of individual LNs for regional RT planning

- Standard delineations performed on CT
- Delineation guidelines\(^4\) based on anatomical boundaries
- RT-induced toxicity\(^5,6\) up to 14%

- Target definition more accurate: lower toxicity?
- MRI enables direct visualization of LNs
- Diagnostic MRI not optimized for this

Purpose:
Develop and optimize MRI for LN imaging in RT planning!

MRI of individual LNs for regional RT planning

Methods and materials

• 1.5 T wide-bore MRI scanner (Ingenia, Philips)
• Healthy female volunteers ($n = 12 + 4$)
• Supine RT position, wedge board
• Anterior coil on perspex stand

• Five MRI sequences optimized
 – 1x T1w, 3x T2w, 1x DWI

• Evaluation qualitatively and quantitatively for RT planning suitability
MRI of individual LNs for regional RT planning

Results

• Qualitatively: scans complementary

 – Contrast of LNs, anatomical information, blood suppression, fat suppression, sensitivity to motion artefacts, geometric accuracy
MRI of individual LNs for regional RT planning

Results

• Qualitatively: scans complementary

 – Contrast of LNs, anatomical information, blood suppression, fat suppression, sensitivity to motion artefacts, geometric accuracy

• Quantitatively: # LNs

<table>
<thead>
<tr>
<th></th>
<th>T1w</th>
<th>T2w</th>
<th>DWI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary</td>
<td>15 - 21</td>
<td>17 - 20</td>
<td>22 - 40</td>
</tr>
<tr>
<td>Supraclav.</td>
<td>1 - 4</td>
<td>1 - 2</td>
<td>1 - 5</td>
</tr>
</tbody>
</table>
Results

- Qualitatively: scans complementary
 - Contrast of LNs, anatomical information, blood suppression, fat suppression, sensitivity to motion artefacts, geometric accuracy
- Quantitatively: # LNs

<table>
<thead>
<tr>
<th></th>
<th>T1w</th>
<th>T2w</th>
<th>DWI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary</td>
<td>15 - 21</td>
<td>17 - 20</td>
<td>22 - 40</td>
</tr>
<tr>
<td>Supraclav.</td>
<td>1 - 4</td>
<td>1 - 2</td>
<td>1 - 5</td>
</tr>
</tbody>
</table>
MRI of individual LNs for regional RT planning

Conclusions

• Achieved direct, individual LN imaging with MRI, in RT position
• Facilitates more accurate target definition/delineation
• Possibilities for MR-guided RT of the regional LNs

Van Heijst et al.
Discussion

- Near future: feasibility study in patients
 - Reproducibility of MRI, set-up
 - Do we see all LNs?
 - Effects of surgery
 - Added value of CT-based delineations

MRI of individual LNs for regional RT planning
Discussion

• Near future: feasibility study in patients
 • Reproducibility of MRI, set-up
 • Do we see all LNs?
 • Effects of surgery
 • Added value of CT-based delineations

• Targets based on individual LNs may be significantly smaller!
 • More distant future: staging with MRI

MRI of individual LNs for regional RT planning
Discussion

- Near future: feasibility study in patients
 - Reproducibility of MRI, set-up
 - Do we see all LNs?
 - Effects of surgery
 - Added value of CT-based delineations

- Targets based on individual LNs may be significantly smaller!
 - More distant future: staging with MRI
 - Develop MR-guided RT of individual LNs
 - Stereotactic single high-dose, SIB, ...?

MRI of individual LNs for regional RT planning
Intra-fraction motion

- Increasingly important
 - targets smaller
 - fewer fractions
 - towards stereotactic (ablative) RT

- Previous studies
 - Projections (EPID);
 - Geometric information of breast (tumour) motion lost
Intra-fraction motion

• Increasingly important
 – *targets smaller*
 – *hypofractionation*
 – *towards stereotactic (ablative) RT*

• Previous studies
 – *Projections (EPID)*;
 – *Geometric information of breast (tumour) motion lost*

• MRI
 – *Superior soft-tissue contrast*
 – *Geometrical accuracy*
 – *MRI Linac*

Purpose: quantification of intra-fraction motion using MRI

Douglas et al. IJRBO 1996
Intra-fraction motion

Methods and materials

• 20 patients in RT position @ 1.5 T
 – Preoperatively and postoperatively

• 2D cine-MRI sequences
 – Oriented through the tumour
 – Sagittal, and transverse, acquired alternately
 – Every 0.3 s during 2 min

• 3D MRI
 – Radiation oncologist delineated breast (+tumour, cavity)
 – Transferred to reference frame on 2D cine-MRI

Van Heijst et al.
Intra-fraction motion

- Reference frame registered rigidly to each scan

Reference scan ($t = t_0$)

Rigid registration

$t = t_1$
Intra-fraction motion

- Reference frame registered rigidly to each scan
Intra-fraction motion

- Reference frame registered rigidly to each scan
- Delineations transformed accordingly
- Deformation vector field to determine displacements

Reference scan ($t = t_0$)

Rigid registration

$t = t_1$

$t = t_2$

$t = t_3$
Time-series acquired in the transverse (left) and sagittal (right) plane; in-plane resolution: 1x1 mm²
Intra-fraction motion

• Motion can be observed

Respiratory motion
Motion amplitude limited
Similar motion observed in most patients
 - Breast and tumour (bed)
 - All in-plane directions (AP, LR, CC)
 - Preoperatively and postoperatively
Intra-fraction motion

- Motion amplitude limited
- Similar motion observed in most patients
 - *Breast and tumour (bed)*
 - *All in-plane directions (AP, LR, CC)*
 - *Preoperatively and postoperatively*
- Rarely observed: irregular motion (up to 14 mm!)
Conclusions

- Intra-fraction motion of breast (tumors) can be observed and quantified using cine-MRI
- Motion amplitudes in supine RT position are limited
- Motion tracking not necessary?
 - *Exception gating on the MRI Linac*
CONCLUSIONS

MRI-guided RT for breast-cancer patients

• Effects of magnetic field detrimental for WBI, not for smaller targets (tumour bed)

• Regional LNs can be individually imaged using new MRI: potential for new RT techniques
 • Near future: patient feasibility study

• Motion amplitudes in supine RT position are limited

• MRI Linac: Information can be used to develop new RT techniques
 • small targets and hypofractionation
 • single high-dose levels: GTV boosting and stereotactic approach
Clinical studies

- High correlation between microscopic tumor size and preoperative (diagnostic) MRI
 Schmitz 2010 Radiother Oncol

- High interobserver variability in postoperative (CT, and CT+MRI) delineations
 Den Hartogh 2014, Radiat Oncol

Next step: at UMC Utrecht, feasibility study (ABLATIVE) will start soon:

- *Elderly, low-risk breast-cancer patients*
- *Preop. single-dose: 20 Gy on GTV, 15 on CTV, using VMAT*
- *On supine CT and MRI*
Acknowledgements

- Jan Lagendijk
- Marco van Vulpen
- Bas Raaymakers
- Marielle Philippens
- Bram van Asselen
- Desiree van den Bongard
- Mariska den Hartogh
- Ramona Charaghvandi
- Didi de Gouw
- Ruud Pijnappel
- Alexander Raaijmakers
- Martijn Intven
- Gijsbert Bol

Thank you for your attention!
1. Skin dose: treatment planning study

Results

- Dose difference maps per voxel
- Dose differences at 0.35 T and 1.5 T are evident in WBI
- Not in APBI!
2. MRI of individual LNs for regional RT planning

- Diagnostic MRI not optimized for regional RT planning
 - *Not in RT position (supine, arms in abduction)*
 - *Contrast (T1w) possibly insufficient*
 - *Breast coil not suitable*

- Purpose: develop MRI for imaging of LNs

- MRI developed and optimized in healthy volunteers
Intra-fraction motion

Preoperative \((n = 18) \)

Postoperative \((n = 19) \)

Breast

Tumour

Tumour bed
Intra-fraction motion

- Intra-fraction motion quantification
 - \(P95\%: \text{distance that includes 95\% of surface voxels} \)

- Anterior-posterior (AP), left-right (LR), and caudal-cranial (CC)

- Preoperative and postoperative analysis